Exercise 103

A company purchases some computer equipment for $\$ 20,500$. At the end of a 3 -year period, the value of the equipment has decreased linearly to $\$ 12,300$.
a. Find a function $y=V(t)$ that determines the value V of the equipment at the end of t years
b. Find and interpret the meaning of the x - and y-intercepts for this situation.
c. What is the value of the equipment at the end of 5 years?
d. When will the value of the equipment be $\$ 3000$?

Solution

Part (a)
Because the equipment value decreases linearly, the function representing it is a line.

$$
V(t)=m t+b
$$

Two points on this line are needed to determine m and b. One is initially (at $t=0$ the value is $\$ 20,500$), and the second is after three years (at $t=3$ the value is $\$ 12,300$).

$$
\begin{aligned}
20500 & =m(0)+b \\
12300 & =m(3)+b
\end{aligned}
$$

Solve this system of equations for m and b.

$$
\begin{aligned}
b & =20500 \\
m & =-\frac{8200}{3}
\end{aligned}
$$

Therefore,

$$
V(t)=-\frac{8200}{3} t+20500
$$

Below is a graph of $V(t)$ versus t.

Part (b)
The t-intercept is the point where the line crosses the t-axis, and the V-intercept is the point where the line crosses the V-axis.

$$
\begin{aligned}
0=-\frac{8200}{3} t+20500 & \rightarrow \quad t=7.5 \text { years }
\end{aligned} \quad \Rightarrow \quad t \text {-intercept : } \quad(7.5,0)
$$

The t-intercept is how long it takes for the value to drop to $\$ 0$, and the V-intercept is the value initially (at $t=0$).

Part (c)

To find the value of the equipment at the end of 5 years, plug in $t=5$ into the formula for V.

$$
V(5)=-\frac{8200}{3}(5)+20500=\frac{20500}{3} \approx \$ 6833.33
$$

Part (d)

To find the time for the value to reach $\$ 3000$, plug in $V=3000$ and solve the equation for t.

$$
\begin{gathered}
V(t)=-\frac{8200}{3} t+20500=3000 \\
-\frac{8200}{3} t=-17500 \\
t=\left(-\frac{3}{8200}\right)(-17500)=\frac{525}{82} \approx 6.40 \text { years }
\end{gathered}
$$

